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ABSTRACT

Power spectrum estimation and evaluation of associated errors in the presence of incomplete sky coverage;
nonhomogeneous, correlated instrumental noise; and foreground emission are problems of central importance for
the extraction of cosmological information from the cosmic microwave background (CMB). We develop a Monte
Carlo approach for the maximum likelihood estimation of the power spectrum. The method is based on an
identity for the Bayesian posterior as a marginalization over unknowns, and maximization of the posterior
involves the computation of expectation values as a sample average from maps of the cosmic microwave
background and foregrounds given some current estimate of the power spectrum or cosmological model, as well
as some assumed statistical characterization of the foregrounds. Maps of the CMB and foregrounds are sampled
by a linear transform of a Gaussian white-noise process, implemented numerically with conjugate gradient
descent. For time series data with N, samples and N pixels on the sphere, the method has a computational expense
KO(N? + N, log N;), where K is a prefactor determined by the convergence rate of conjugate gradient descent.
Preconditioners for conjugate gradient descent are given for scans close to great circle paths, and the method
allows partial sky coverage for these cases by numerically marginalizing over the unobserved, or removed,

region.

Subject headings: cosmic microwave background — methods: data analysis — methods: statistical

1. INTRODUCTION

Power spectrum estimation and evaluation of the associated
errors in the presence of incomplete sky coverage; non-
homogeneous, correlated instrumental noise; and foreground
emission are problems of central importance for the extrac-
tion of cosmological information from the cosmic microwave
background (CMB). From a Bayesian point of view, power
spectrum estimation involves the maximization of the poste-
rior probability density, with error bars given by the set of
cosmological parameters or power spectrum whose integrated
posterior density achieves some specified level of confidence.
A Bayesian approach to CMB analysis for large data sets in-
volving a direct evaluation of the likelihood is intractable as a
result of the O(NV?3) expense associated with computing the
inverse of nonsparse matrices, or their determinants (Borrill
1999; Bond et al. 1999). The goal of this paper is the devel-
opment of alternative numerical methods, specifically Monte
Carlo techniques, for the Bayesian analysis of the CMB, in-
cluding the complications of incomplete sky coverage, cor-
related noise, and foregrounds.

Previous work has demonstrated that for a certain class of
scanning strategies, the signal and inverse noise matrices are
block diagonal. The block diagonal properties of these ma-
trices give an exact O(N?) Bayesian method, and therefore
tractable for data sets as large as will be returned from Planck.
The complications of this method are that it cannot easily
accommodate partial sky converge or precessing scan strate-
gies. The method of Oh et al. (1999) computes the maximum
of the likelihood through a Newton-Raphson method. The
numerical innovations of this method involve Monte Carlo
simulations and the use of conjugate gradient descent, giving
an overall expense O(N?). The method was proposed and
numerically demonstrated in the context of uncorrelated noise
and a region of sky coverage of azimuthal symmetry, where a

good preconditioner can be constructed. However, the algo-
rithm is in fact more general, provided that there is sufficient
memory for storage of the needed matrices and that conjugate
gradient descent converges quickly enough (i.e., there is a
good preconditioner).

As suggested in Wandelt & Hansen (2003), we can use the
ring set approach to supply preconditioners. An outstanding
problem to be solved is a way of retaining the mathematical
advantages of a ring set scan (block diagonal inverse noise and
signal matrices) while accommodating partial sky coverage.
The approach formulated in this paper handles the problem of
partial sky coverage by embedding the data in an azimuthally
symmetric region of sky and using a Monte Carlo Markov
chain to numerically marginalize over the unobserved part.
For scans close to ring sets, we therefore inherit good pre-
conditioners, allowing an extension of both the ring set and
conjugate gradient methods to scan strategies as planned for
Planck.

For observations d = s + f + 7, where (s, f, ) are the CMB
signal, foregrounds, and noise, respectively, our approach to
power spectrum estimation is motivated by the identity (de-
rived in § Al)

) _ [p(f‘|s)]
o = | 4D e e 0

where I' is any parameterization of conclusions (such as the
power spectrum or cosmological parameters) and I’y is any
fixed guess. The Bayesian posterior ratio on the left is given as
an integral over the unknown quantities that are assumed to
generate the observed data. Maximization of the posterior
involves computing the gradient of equation (1), which will be
shown to depend on the expectation value of the power
spectrum with respect to the random field p(s,f|To, d),
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Elo/(s)|To, d] = / ds.)op(s.fITod),  (2)

where we have defined the power at a given multipole order
for a specific map

1
o) =5 > ligimls)|? 3)

—I<m<l

(here and throughout the paper we use angle brackets to rep-
resent inner products). For this paper we choose the power
spectrum itself as the parameterization and maximize the pos-
terior ratio in equation (1) by the expectation maximization
algorithm (Dempster et al. 1977), which proceeds by iteratively
setting C§”“) = E[gl(s)\an),d}. The algorithm converges to
the posterior maximum for a uniform prior and gives an un-
biased, consistent estimator (see Appendix B). In this paper we
focus on computation of the expectation value of the power
spectrum E[o(s)|C E"), d] given the data and some guess Cl(")
under the assumption of perfect foreground separation (al-
though we comment on how the approach can be generalized
to include foregrounds later in the paper and leave its numerical
demonstration for future work).

We compute the expectation value of the power spectrum
numerically with a Monte Carlo approach, where we sample
maps of the CMB from the probability density p(s|f,d, C;).
Conditioning on some estimate of the foregrounds, the method
exploits the fact that p(s| f, C;,d) is a Gaussian random field
and therefore completely characterized by the mean field map
and covariance matrix of fluctuations about that map. Maps
are sampled from p(s|f, C;,d) by first computing the mean
field map with conjugate gradient descent and then sampling
fluctuations about the mean field map from a zero mean
Gaussian field with covariance matrix (N~ + C~!)~! (where
N-! is the inverse noise matrix and C~' is the inverse co-
variance matrix for the CMB). These fluctuation maps are
sampled by a linear transformation, numerically computed
with conjugate gradient descent, of a spatial white-noise
Gaussian process thereby generating maps with all the same
statistical properties as samples from p(s|f, C;, d).

Each step of conjugate gradient descent involves a multi-
plication by the matrix 7 + C'/2N~'C'/2, which can be done
very quickly by multiplication by N~! in the basis in which it
is diagonal, followed by a transform to the spherical harmonic
basis where C is diagonal. For spatially uncorrelated noise and
circularly symmetric beams, we only need to transform from
the pixel to the spherical harmonic domain, with an expense
O(N??) (Oh et al. 1999). In order to accommodate spatially
correlated noise, we transform to the time domain, followed
by a transform to the spherical harmonics, giving an expense
K[O(N??) + N, log N;], where N, is the number of time sam-
ples and K depends on the convergence rate of conjugate
gradient descent. Including the full complications of asym-
metric beams, we would need to compute a convolution on the
sphere. Using the convolution method of Wandelt & Gorski
(2001), the expense of our method is K[O(N?) + N, log N,].

The computational feasibility of this method is limited by
finding a numerical implementation of conjugate gradient
descent that converges quickly so that the prefactor K above is
small. The strategy here is to embed the data in a region
covered by an exact ring set scan, following the intuition that
good preconditioners can be constructed for scan strategies
close to ring sets (Wandelt & Hansen 2003). Embedding the
data in a region on the sky with no observations (or where

Vol. 609

they have been removed) is accommodated by numerically
marginalizing over the missing observations. Moreover, the
same techniques can be used to marginalize over the fore-
grounds and provide Monte Carlo estimates of the confidence
intervals for cosmological parameters.

The paper is organized as follows. We first review compli-
cations with a direct computation of the likelihood and provide
an overview of our approach. We then discuss a technique we
call “transformed white-noise sampling,” which allows us to
sample maps representing fluctuations about the mean field
map for some guess of the power spectrum. We demonstrate
the method with a flat sky 512 x 512 test case, including in-
complete sky coverage, with uncorrelated, nonhomogeneous
noise. We close with a discussion of further complications
encountered in real CMB experiments and how they can be
accommodated in the framework presented here.

2. POWER SPECTRUM ESTIMATION
2.1. Likelihood

We begin with a brief review of the likelihood and com-
plications with its computational evaluation. The data returned
from an experiment is a vector in the time domain d(f), which
is related to the CMB signal on the sky s(n) through some
linear mapping and additive Gaussian noise,

d@t) = {/dn’é[n(t) —n'] /dn”B(n’,n”)s(n”)} +n@), 4)

where B(n',n’"") is the beam of the instrument and 7(¢) is
Gaussian noise, assumed to be stationary with a noise corre-
lation matrix N(z,¢') = N(¢ — t). Denoting the linear mapping
from sky to time domain as

R= /dn’é[n(t) —n'] /dn”B(n',n”), (5)

we simply write d = Rs +n. The likelihood for the power
spectrum C; given the data is

p(d|Ci) / ds e~ (1/DA=RIN (d=Rs) p=(1/D5C7's (g

Any linear transformation of the data vector will generate
a Gaussian form for the likelihood. Transforming the data
to an estimate of the CMB map § = (R'TN~'R)'R"N~'d (as
discussed in detail in Tegmark 1997; Stompor et al. 2002)
with covariance matrix

EG®3) =C+ (R'N"'R)” (7)
gives the likelihood (up to an additive constant)
log p[3(d)|C)] = — $3(d) {(RTN’IRf1 + C} 71§(d)
— 1 log det [(RTN_lRy1 + C] (8)

We can also write the likelihood up to an additive constant in
the original time domain,

log p(d|C;) = —Ld(N + RCRT)"'d — L log det(N + RCR").
%)
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Directly evaluating the likelihood in either the spatial or time
domain results in an O(N?) computation, as it involves inver-
sion, or computation of the determinant, of [(R”N~'R)™" + C]
or (N + RCRT), respectively. The computational expense is
due to the fact that we do not know the eigenbasis for either
of these matrices, and computing this basis is generally an
O(N?) problem.

The method of Oh et al. (1999) solves the likelihood in the
spatial domain by evaluating the determinant with a Monte
Carlo algorithm. The method involves conjugate gradient
descent to solve a linear problem and as such involves matrix
multiplication, which carries an O(N?) expense. The method
was proposed and numerically demonstrated in the context of
uncorrelated noise and a region of sky coverage of azimuthal
symmetry. However, the algorithm is in fact more general,
provided that there is sufficient memory for storage of the
needed matrices and that conjugate gradient descent converges
quickly enough (i.e., there is a good preconditioner).

For a certain class of observing strategies, we can exactly
compute the likelihood, and for perturbations about these
cases, we can use the approximate case as a preconditioner
(as suggested in Wandelt & Hansen 2003). The approach for-
mulated in this paper provides a consistent way to do this and
involves a Monte Carlo Markov chain approach to numerically
marginalizing over the unobserved part of azimuthally sym-
metric regions of the sky.

2.2. Embedding the Data—Marginalization

The method to be developed in this paper involves em-
bedding the data in a region for which the signal and noise
matrices have desirable properties. The likelihood for the data
in the context of some model is given as an integral over the
part of the embedding region that was not observed. This
gives the identity for the Bayesian posterior for the power
spectrum or cosmological model (denoted by I'), given the
time domain data d(¢) as the integral

p(Lld) 0 @ | 2T s®)
sy = 460 @) p(Tols,50)
x p(s0,s@), 1ir0.a), (10)

where we have explicitly written the CMB maps s = (s(!), s(2))
in terms of the part of the sky where we have data s() and
the complementary region s. For the case of full sky cov-
erage and prior knowledge ¢(I'), the log posterior ratio is

given as
p(Cls",s®) q(T) 1 1) 2
1 =1 - (1+= @
ng(F0|s(1),s(2)) og 4(To) 2}: + 5 U/(S ,S )

x[—l — —1 ] + 1og—Cl(F)
I  G(To) Ci(To) |’
(11)

where the power at a given multipole order is

az(s(1>,s(2)) :ﬁ Z H<lm|s(l) +s<2>>H2.
—i<m<i

For other regions with azimuthal symmetry (an annulus or
polar cap), the posterior ratio would involve a similar form in
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terms of block diagonal matrices. The simple form of the
log posterior ratio for full sky coverage is one of the moti-
vations for treating the problem of partial sky coverage as
missing data and marginalizing over it (detailed and justified
in § A2).

2.3. Maximization

In order to estimate the power spectrum, we would like to
find T, which maximizes the posterior given the noisy data.
Differentiating the posterior with respect to the parameters C;
gives a gradient in the direction

1 E(O’]|d,F0) 1
ro(xz;:(wrz){ C}Ty)  G(To)) (13)

where E[Ci(s)|Tg,d] was given previously in equation (2).
An improvement of our current estimate of the power spec-
trum I'y can then be given according to a Newton-Raphson
iterative scheme (Bond et al. 1998; Oh et al. 1999), where our
current guess is updated using an approximation to the cur-
vature of the likelihood F lj,l(d, I'y), according to

ZF,,, d,T,)

In Appendix B, it is shown that the curvature matrix is given
in terms of the expectation value

dlogp(I'|d)
aC,

810gp(F|d)

T,
Ci(Tny1) = e,

(14)

Ty

E(O’1011|d,1—‘0) = /dSO’[(S)O’]/(S)p(S|d,F0). (15)

In practice, we might want to avoid computing the inverse of
the curvature matrix and simply use the diagonal elements.

For this paper, we instead implemented the simpler (al-
though more slowly converging) expectation maximization
algorithm (Dempster et al. 1977). This method essentially
follows from Jensen’s inequality, giving the lower bound to
the posterior

pI'|d) qgT) 1 -
oo i) = g~ (1 3) {E[ ()ITo.d

!

1 1 /(1)
) [CI(F) B CI(FO):| + log Ci(To) } (16)

For a uniform prior, the lower bound is maximized by

E[Ci(s)|T0,d]. In Appendix B, we prove that this estimator

iteratively converges to the maximum of the posterior and is
a consistent and unbiased estimator (for a uniform prior).

2.4. Computing Expectation Values for the Power Spectrum

In order to iteratively converge to the optimal, consistent
estimator of the power spectrum, we need to compute, for any
current guess of the power spectrum I'y, the expectation value
E[Ci(s)|d,T] as defined in equation (2). Defining the mean
field map

s=[N"'+C ()] N d (17)

and associated power spectrum estimate

76) =gy LI (19)
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the expectation value can be written by integrating over
fluctuations about the mean field map £ =s — 5§ as

Elpl. 1) = 5y 3 [ de 6 elmynls +.
<1/2> [V-1+ ' r)]e
fdf’ (1/2)¢' [N T+ C T (T,¢ - (19)

Since E((Im|£)) = 0, the expectation value is

Elor(s)ld,Tu) = @)+ 5 S [ de elim) mlg

o (/E[NT I (T)]¢
fdf/ /DEINT+C Tl

(20)

We refer to these two terms as the mean field map power
spectrum estimate (known to be biased) and the correction
term. Analytlcally, we know that the correctlon term is glven
by I+ 1), (Im|[N~' + C~ (") " |im); however, it is
intractable to compute and store the matrix [N~! + C~ 1(1",,)]
Our strategy is to compute the correction term with a Monte
Carlo method described below.

2.5. Transformed White-Noise Sampling

Because of the computational intractability of computing
the matrix inverse (N~! + C~1)~!, our strategy is to compute
the expectation value of the correction term from fluctuation
maps ¢ sampled from the zero mean Gaussian random field
with covariance matrix (N~' 4+ C~")"'. We could easily sam-
ple fluctuation maps ¢ if we could compute the eigenvectors
and eigenvalues of the matrix (N~' + C~!), since in this basis
the Gaussian probability density for ¢ factors. However, com-
puting the eigenvectors and eigenvalues is again an O(N?)
operation.

Because of these difficulties, we look for an alternative way
to sample maps. Defining § = (N~! + C71)¢, we can write
the log density, up to the normalization constant, as

—s(N'+Cc Y (21)

(v e =
The transformed Gaussian process has the covariance matrix
N~!+ C~!, making it easy to sample from. Specifically, we
can sample maps from this Gaussian process by drawing
two independent white-noise maps (w, w,) and setting § =
C 12w, + N~'2w,. Since both white-noise maps are drawn
independently from a zero mean Gaussian process, the re-
sulting covariance matrix is E(6 ® §) = N~' + C~! (as dis-
cussed in Appendix C).

The maps with the correct statistical properties are
£ ="'+ C 1716, which can be solved numerically for a
given map 6. A numerically stable implementation (as also
noted in Oh et al. 1999) involves conjugate gradient descent to
solve for the maps C~V2¢ (which can easily be transformed
back to the fluctuations maps &),

(1 + CI/ZN”CI/Z) (C*l/zg) —w + CAN 2w, (22)

The resulting maps 5 have the correct statistical properties,
since E(€® &) = (N~' +C )7 (see Appendix C), allowing
us to compute the correction term to the power spectrum es-
timate of the mean field map as a sample average.
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In order to actually sample fluctuation maps by trans-
forming a Gaussian white-noise process, we need to obtain the
Cholesky decomposition of both the signal and noise matrices.
If we have observations with uncorrelated noise on the sky,
then N=12 is known in the spatial domain. However, the scan
strategy of the instrument will result in complicated correla-
tions, so that computing N~'2 is intractable. The noise is
simple in the time domain, which suggests that instead of
choosing white-noise maps in the spatial domain, we draw
from white-noise Gaussian processes in the time domain,
where we know N2 in the Fourier basis, followed by a
transformation to the sky, where we can operate with C'/2.

For a realization of a white-noise process in the time do-
main 7 and a white-noise map in the spatial domain w, we can
compute a fluctuation map according to

(1+C2RINTIRC') (C712¢) = w+ CVPRTN VT,
(23)

where N2 is known in the Fourier basis associated with the
time domain. In Appendix C, this procedure is justified with
a proof that the covarlance matrlx of the fluctuation maps
is E¢®&=[C"+®RIN'R)

2.6. Computational Expense

The overall computational expense is fixed, for each itera-
tion of the power spectrum estimate, by the expense of matrix
multiplication and number of iterations needed to converge
with conjugate gradient descent. In order to multiply by the
matrix C2RT N~1RC'2, we need to perform the following:

1. Multiply by C': this is a diagonal matrix in the spherical
harmonic domain if the embedding region is the full sky.

2. Transform to the time domain with the matrix R.

3. Compute a time domain fast Fourier transform (FFT).

4. Multiply by N-!; this is a diagonal matrix in the time
domain Fourier basis.

5. Compute a time domain inverse FFT.

6. Transform back to the spatial domain with R”.

7. Compute a spherical harmonic transform.

8. Multiply again by C'”2 in the spherical harmonic domain.

For the case of circularly symmetric beams, the convolution
with the beam is not needed when operating with the matrix
R or its transpose, giving an expense KO(N*/? 4 N, log N,),
where N, is the number of time samples and K is the prefactor
related to the convergence rate of conjugate gradient descent.
For cases in which the beam is not circularly symmetric, the
convolution with the beam would have to be computed, in-
creasing the expense to KO(N? + N, log N,).

3. NUMERICAL EXAMPLE

The simulations presented here involve the assumption of
spatially uncorrelated, but nonhomogeneous, noise, as shown
by the top left panel of Figure 1. We also restrict the problem
to power spectrum estimation from a small patch of sky and
neglect curvature (and therefore work with discrete Fourier
basis instead of spherical harmonics). Our goal with these
numerical simulations is to demonstrate the approach in ac-
tion. Future work will involve numerical implementations on
the sphere.

A CMB power spectrum was generated using CMBfast
(Seljak & Zaldarriaga 1996), followed by the creation of a full



No. 1, 2004

BAYESIAN ANALYSIS OF CMB 5

Fic. 1.—Top left: The rms of the noise in each pixel in units of the per pixel rms of the noise-free map, ranging from 0.5 in the lower left to 1.6 in the upper right.
The black region is an unobserved “hole.” Top right: Noise-free realization used as input: the map covers an area of sky 43° x 43° with 5’ pixels, smoothed with a
10" beam. Bottom left: Mean field map given a guess at the power spectrum and the simulated noisy data. Bottom right: Typical fluctuation map computed with

conjugate gradient descent. A linear color bar is shown at the top of the figure.

sky map on the sphere using the SYNFAST routine in the
HEALPIX package (Gorski et al. 1998"). A smaller patch of
the sky was then selected and projected on a rectangular grid.
This map s(n) was taken to be the noise-free map, as shown
in the top right panel of Figure 1. We then generated a noise
map 7(n) by selecting independently at each pixel a Gaussian
random number with variance scaled as shown according to
the top left panel of Figure 1. Noise was added to the noise-
free map and data then removed in a rectangular hole (as
shown in Fig. 1). This was taken to be a simulated data set
d = s + n with partial coverage of the rectangular patch of sky.

The inverse noise matrix was given in terms of the variance
at the ith pixel o2 as

6,072
—1 g¥i
Ny = {0

! See http://www.eso.org/science/healpix.

for observed region of sky, (24)
elsewhere.

As an initial estimate of the power spectrum, we computed
the power spectrum of the noisy, incomplete data (as com-
puted in the two-dimensional Fourier basis since we neglected
curvature) and subtracted the power spectrum of a single
simulated noise map (on the region of sky where we have
data). We then iteratively adjusted the power spectrum with
the expectation maximization as above until convergence.

We found that preconditioning was in fact necessary
to achieve a reasonable convergence rate. Using the initial
estimate of the power spectrum C(I'g) and computing the di-
agonal elements of the inverse noise matrix in the Fourier
domain (k|N~'|k) with Monte Carlo noise maps gave the
preconditioner

-1
M) = sw |1+ Gl TN G| (25)

Conjugate gradient descent was then used to solve the linear
equations for the mean field and fluctuation maps
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Fic. 2.—Plot showing the power spectrum estimation after 20 iterations
starting from a flat initial guess. The green dots represent the results of sep-
arate runs on each of 10 simulated data sets, with each shade of green rep-
resenting a different run. For each data set we have produced a new noise-free
map (drawn from the theoretical power spectrum given by the solid black line)
and added inhomogenous noise and a hole as shown in Fig. 1. The initial
guess used was the expected (flat) noise spectrum, multiplied by a random
number between 0 and 1. At low / the signal-to-noise ratio is high, and the
spread in the dots is caused by noise and sample variance. At high /, the
signal-to-noise ratio is low and the spread in the dots is caused by variation in
the initial guess, resulting in an upper bound as shown in the plot. Also shown
are sample power spectra for a single simulated data set (light blue line) and
noise-free map (dark blue line).

M (I+CN ")s=M"'CN"'d,
M (I+CN =M, (26)

where § = CT/2w, + CN~V/2w, was computed from two in-
dependently chosen spatial white-noise maps (w;, w,) and
N~V2 vanished in the unobserved part of the sky and else-
where given by o;!. The result of iterating the algorithm to
convergence is shown in Figure 2. Uncertainties in the power
spectrum estimate were computed by Monte Carlo, in which
new CMB maps were generated, noise added, and the algo-
rithm run again.

4. ADDITIONAL PROBLEMS

The methods presented above can be generalized to handle
other additional problems faced in the Bayesian analysis of the
CMB. We do not provide numerical examples but briefly
include comments on how to use transformed white-noise
sampling to estimate error bars and include foregrounds.

4.1. Confidence Intervals from a Markov Chain

The ability to sample maps of the CMB given some estimate
of the power spectrum can be used to construct a Markov chain
Monte Carlo algorithm that converges to the Bayesian posterior
p(T'|d) itself. Previously, Markov chain Monte Carlo tech-
niques have been proposed for the extraction of marginal den-
sities for cosmological parameters from approximate Bayesian
posterior densities for the power spectrum (Christensen et al.
2001; Knox et al. 2001; Lewis & Bridle 2002; Runbino-Martin
et al. 2003).

One way to derive a Markov chain algorithm that converges
to the Bayesian posterior is to start directly from

p(Dld) = /dsp(r,s\d). (27)
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Then using the fact that p(T'|s,d) = p(T'|s) as discussed in
§ Al, we can write

p(Tld) = [ dsp(Tls.d)p(sla)
— [@sppisid
- / dsp(T|s) / dr’ p(s, T'|d)
— [dsp(rl) [ arpsir app(rid)
= [ar'] [ asp(xiopeirapwio. s

This shows that the Bayesian posterior is the stationary den-
sity of the transition matrix

T(D|T;d) = / ds p(Tls) p(s|T”, d). (29)

Therefore, sampling from any initial approximation to the
Bayesian posterior and repeatedly sampling maps given pa-
rameter estimates, followed by variations in the parameters
given the maps, gives the sequence of approximations

purla) = [ ar [ / dsp<r|s>p<s|r’,d>}pzv1<r/|d>, (30)

which will give convergence to the Bayesian posterior itself

The above can also be understood within the Metropolis-
Hastings algorithm, which is a general framework for the
construction of Markov chains that converge to a target sta-
tionary density. The goal is to construct a transition matrix for
the joint density of CMB maps and the power spectrum: this
can be done by first assuming detailed balance

p(T1,s1|d)T (T2, 82T, 515d) = T(T1, 81T, 82;d) p(T'2, 52|d).
(31)

From the condition of detailed balance we see that
POl = [ A6 Tas) T T2 s dp(Tasald), (32

which shows that the Bayesian posterior is the marginalized
equilibrium density, generated by repeatedly taking steps
generated with the transition matrix 7'(I'5,3|T'1,s1;d). Given
any approximation to the joint density p(I',, s»|d), repeated
application of the transition matrix will reach the equilibrium
density.

There are many ways to construct a transition matrix that
has the desired stationary density (the fixed point of iterating
with the transition matrix). Specifically, we are free to choose
any proposal density p(I';,s2|T'1,s1;d), which is then related
to the transition matrix through an acceptance or rejection of
the proposed move. For any I'5,s; # I'},s; the transition
matrix is related to the proposal density according to

T(T2,5[T1,s1;d) = a(T2, 50|01, s15d)p(T2, 52|01, s15d) - (33)
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for any I'p,s, # I'1,s1. A common choice for the acceptance

probability, consistent with the condition of detailed balance,

is

p(L2,52ld) p(T'1, 51|12, 525 d)

p(Ti,s11d) p(Ta, 52T, s15d) ]
(34)

a(T'2, 52|, s1;d) =min| 1,

Note that the unknown (and uncomputable) normalization
constants have dropped out, and the acceptance probability
can be explicitly computed for various choices of the proposal
density. Specifically, the joint density p(T', s, d) gives the ratio

p(T2;55|d) _ p(Ia)
p(Lisild)  p(T'y)

7(1/2)(d7RS2)N7| (d*RSz)*(l/Z)SzCPl (1"2)52, IOgHC(IE)H
X

—(1/2)(d—Rsy )N~ (d—Rs1)—(1/2)5:C~" (T'1)s1— log||C(Tn)|| *

One example of a proposal density can be given by alter-
nately proposing a new map while holding the parameters
fixed, and then in a second step varying the parameters while
holding the maps fixed. Moreover, proposing these variations
according to the exact conditional densities inherited from the
full joint density p(I', s, d) gives an acceptance probability of
unity. To show this, we can set the proposal density for the
first step of varying the map alone to

p(s2|l'y;d)  for T'y =17,
p(L2,8:|T,51;d) = { (52 ) (36)
0 for I', # Iy,

which gives the acceptance probability

) p(La,85ld) p(Ty,51|T2, 805 d
a(Ta, 82|11, s1;d) = mm{ ' o(Tr1d) pTasalTrsrid) ]
mm{l p(s2|d, Ty )p(I'1|d) p(sild, Fl)}
" p(sild, T1)p(T1]d) p(s2]d,Th)
=1, (37)

where in the second line above we have used p(I',s|d) =
p(s|T,d)p(T'|d) and also the fact that I', = T';. Similarly, in
the second stage, we vary the parameters while holding the
map fixed, so that

p(als1)  for s, = s,

(38)
0 for \Y) #S]

p(F27S2|F1,S1;d) = {

gives an acceptance matrix

I d I T od
a(rz,S2|F1,S1;d)=max{ (I, 520d) p(L't, 51|72, 52 )}

)
p(F S1|d) (F2,52|F1,S1;d)
p(Lafs1)p(sild) p (F1|Sl)]
" p(Tils1)p(si|d) p(T2)st)
=1, (39)

= l’l’laX|:

where in the second line we have used p(T', s|d) = p(T'|s)p(s|d)
[which follows since p(T'|s,d) = p(T'|s)] and substituted s, =
s1. This example of a two-step proposal process is simply an-
other way to understand, within the context of the Metropolis-
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Hastings algorithm, the identity for the Bayesian posterior
given in equation (30).

In summary, a single step of the Markov chain, involving a
transition from (I'1,s1) — (I'2,s,), involves the following:

1. Choose a new guess for the parameters from p(I';]s1).
2. Sample a map from p(s;|d, I';) according to the following:

A. Compute the mean field map 3 = [R'TN"'R+
c ()] 'RTNd.

B. For two independently sampled white-noise maps in
the spatial and time domains (w, 7), compute ¢ as the solution
to (I + C'>RTN-'RC'/2\(C~1/2¢) = w+ CV2RTN-1/27.

C. Setsy; =35 +¢&.

3. Continue.

For circularly symmetric beams, each step of the Markov
chain has expense KON/ + N, log N;). While beyond the
scope of this paper, future work will study the convergence
rate of the Markov chain to the stationary density for other
proposal densities.

4.2. Inclusion of Foregrounds

We conclude with a brief discussion of the inclusion of
foregrounds. The inclusion of the foregrounds involves sam-
pling both CMB and foreground maps given some estimate of
the CMB power spectrum and some prior for the foregrounds.
Examples of proposed foreground priors for a Bayesian treat-
ment of their separation from the CMB include the maximum
entropy method (Hobson et al. 1998) and Wiener filtering
(Tegmark & Efstathiou 1996). Wiener filtering follows di-
rectly from the assumption that the prior for the foregrounds is
Gaussian, with a known power spectrum. It should be noted
that, although the foregrounds themselves are non-Gaussian,
the separation of the foregrounds from CMB is driven not by
the prior but by the quality of the data. We do not presume to
have a complete (non-Gaussian) characterization of the fore-
grounds, but merely some information as to their statistical
properties. The more that is known about the statistical struc-
ture of a particular source of emission, the easier it will be for it
to be distinguished from other sources. Even knowing only the
power spectrum of the foregrounds can improve the separation
of the CMB and foregrounds (when included with data of
sufficient spectral coverage), and it is this example we discuss
below. While we restrict discussion to the Gaussian foreground
priors, it should be noted that other foreground priors can be
included within the numerical framework presented here, and
this is one of the advantages of the approach.

Including foregrounds, the data for the jth frequency
channel are given by

di(t) = ApRis + Y ApRify + 1, (40)
P

where R; is the mapping from the sky to the time domain for
the jth frequency channel, 4, is the response of the CMB at
the jth frequency, 4, is the response of the pth foreground
component at the jth frequency, and we sum over the fore-
ground components f,. For a statistical characterization of the
foregrounds 3 and a guess of the CMB power spectrum I', we
need to sample from the density given by (up to normalization)

(d — AgRs — ARf)N ' (d — AgRs

— ARf) —sC™'(T'y)s — log p( f1B).
(41)

—10gp(s,f|d, P07ﬂ) ~
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We need to compute the expectation value

E(Cild, Ty, 8) = / d(s.f)Ci(s)p(s,f1d.To. ). (42)

This expectation value can be numerically computed by sam-
pling maps (s, /) by the time average of a Markov chain with
equilibrium density p(s,f'|d, Iy, §). One legitimate way to con-
struct such a Markov chain is to alternately sample maps from
the conditional densities p(s|f,d,To, 8) and p(f]s,d,To, 5).
We briefly comment on sampling maps from each of these
conditional densities.

Given some estimate of the foregrounds, we need to sample
maps from the conditional density

- logp(s\f, d7 F07 ﬂ) ~ (d - AORS - ARf)Nil
x (d — AgRs — ARf) — sC~'(Ty)s.
(43)
Sampling from p(s|f,d, Ty, 5) proceeds in essentially the
same way as described above, but generalized for multifre-

quency data. Specifically, the mean field map includes the
subtracted response from the foreground estimate

(C' + RTAEN"40R)s = RTASN~'(d — ARf) (44)
and the fluctuation maps include a time domain white-noise
sample for each frequency channel

~1/2

(C"+RTAIN " AR)E = C ' Pwy + > RIAgN; 7. (45)
J

Note that the covariance matrix of the fluctuations is

El¢® g = (C' +RTAIN"4R) ", (46)
where the proof depends on the independence of the time
domain white-noise maps for every frequency channel.

Given some estimate of the CMB, we need to sample from
the conditional density

- logp(f|S7d, 1—‘07 ﬂ) ~ (d - AORS - ARf)
x N~'(d — AoRs — ARf)— log p(fB).
(47)

If the prior for the foregrounds p( f|() is Gaussian,

—logp(f18) ~ /B~ (D), (48)

then we can also use transformed white-noise sampling. First,
we compute the mean field foreground map,

(B + RTAINT'4,R) ] = RTAIN™'(d = AoRs),  (49)
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and then sampling fluctuations &, according to the transform
of white-noise samples

(B + RTAINT 4,R) g, = B Py + 3 RIAN P (50)
J

Multiplying by the foreground signal matrix B is done in ei-
ther the pixel or spherical harmonic basis depending on the
basis in which it is sparse.

If we use a non-Gaussian prior (such as the maximum en-
tropy method or other priors), then we will need to employ
more general sampling techniques to sample foreground maps,
such as the Metropolis algorithm. In this case the needed
expectation value is to be computed as the time average from a
Markov chain with equilibrium density p(s,f'|d, T',).

5. CONCLUSIONS

The fundamental hurdle to numerically implementing an
exact Bayesian approach to CMB analysis, including compli-
cations of partial sky coverage, correlated noise, and fore-
grounds, is finding efficient ways to solve the linear problem
(I + C'2RTN-TRC'/?)(C~'/2¢) = C'/26 for any vector 6. Solv-
ing the linear equation has an expense KO(N>/? 4+ N, log N;)
for circularly symmetric beams, and the algorithm provides a
tractable approach provided that K can be made small enough.
The strategy we presented in this paper allows the data to be
embedded in an azimuthally symmetric region of the sky cov-
ered by a Wandelt ring set scan, with the intuition that, provided
that the true scan of the instrument is close enough to the exact
scan, we inherit good preconditioners (see Appendix D).

We also commented on how the method of transformed white-
noise sampling can be used in Monte Carlo Markov chain for the
entire Bayesian posterior. The feasibility of this approach depends
on a good approximation to the posterior itself. Previous work has
demonstrated several computationally feasible, unbiased esti-
mates of the power spectrum and associated error covariance
matrix. Any of these methods could therefore be used, in princi-
ple, to give an approximate posterior, so that a Markov chain
approach can be used as a final consistency check.

Future work will incorporate the foregrounds in the algo-
rithm presented here, generalized for multifrequency data.
Maximization of the likelihood of the power spectrum given the
data again leads to the computation of the expectation value
E(C/|d,T), but now the marginalization includes the fore-
grounds as well. If the prior for the foregrounds is Gaussian,
then we can also use transformed white-noise sampling to
sample a new foreground map while conditioning on the CMB.
If the prior used is non-Gaussian, other sampling schemes can
be used, including Gibbs sampling or the Metropolis algorithm.

The research described in this paper was carried out at the Jet
Propulsion Laboratory, California Institute of Technology, under
a contact with NASA. We also thank Eric Hivon and Ben Wandelt
for interesting discussions during the course of this work.

APPENDIX A

IDENTITIES FOR THE BAYESIAN POSTERIOR

Al. IDENTITIES FOR THE POSTERIOR

The data returned from a CMB experiment is a vector d(¢) in the time domain, generated from scanning the CMB signal s(n) and
foregrounds f(n) on the sky and adding independent Gaussian noise. The Bayesian posterior is given directly as an integral over
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unknown quantities by
p(rld) = [ ds.)p(Ts.f1d) (A1)

For the case of Gaussian random fields, this integral can be done analytically, but evaluation of the resulting likelihood leads to
computationally intractable matrix manipulations. For any estimate I’

p(T d
p(Dld) = /d,f[ mi%%}a@&ﬂa. (A2)
Since we have
p(T5.f1d) _ p(Tls.f.d) a3)

p(F07S,f|d) _p(F0|s,f,d) 7
this becomes

p(r10) =p(Tola) [ dts.r) | ZEEL ot i) (a9

where we have used p(L'g,s,f|d) = p(s,f|To,d)p(T'o|d). By the assumed independence of the noise, the joint density over which
we are marginalizing is

p(L,s,fld) o< p(d|s)p(s|T) p(f18)p(L), (AS)

where p(T") is a prior for the parameters, p( f|/3) is a prior for the foregrounds (with 3 a parameterization of the statistical properties
of the foregrounds, such as the power spectrum), and p(d|s) is completely determined by the noise properties of the instrument, the
beam, and scan strategy. Given some estimate of the noise-free CMB signal, the density for a new guess of the power spectrum is
independent of the data, p(T|s, f,y) = p(T|s), as shown by

pdls)p(s|IT)p(f)q(T)
Jdr p(d|s)p(s|T) p(f)g(T")
(|F) )
= A e (A6)

p(Tls.f.d) =

Therefore, for any estimate T'), our identity now reads

) [ (el

p(Told) /d( ) _p(l“o\s)_p( f1To,d), (A7)
or for the likelihood ratio

pdl) o [PGID]

p(d|To) /d( ) _p(s|F0)_p( /1o, d). (A8)

A2. PARTIAL SKY COVERAGE

The likelihood for the CMB given the theory for partial sky coverage can be written as the marginalization over the unobserved
part of the sky. Denoting the CMB s = (s(1), 5(2)) as the CMB in the observed and unobserved regions of sky, respectively, we have

p(s(l>|F> = /afs(2 ( |F) (A9)

Therefore, the posterior for partial sky coverage can be written
p(T1d) x g(T) [ a(s.1) p(alsf ) (s I0)p( 113

(s
—q(@) [ d(s0.5) p(ds". 1) [ / ds<2>p(s<“,s<2>|r)}p<f|ﬂ)
) |

—q@) [ d(s.5,7) p(ds1 ) (5.5 I0)p(113) (AL0)
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This gives the identity, explicitly written for arbitrary sky coverage,

(1 @
p(T|d) :/d(sa)’s(z),f)[l’(ﬂs )8 )]p(s(‘),s(”,fl‘o,d)- (Al1)

p(Lold) p(Tols™,s))

Because s = (s('),s<2)) is supported on the full sky, the log posterior ratio is

p(Lls) q(I') < 1) { { 1 ! } G(T) }
lo =1lo - [4+=)4Ci(s - + lo Al2
&)~ a2\ 290 G e e (A2
and the conditional density from which we are to sample (s(!),s(>)) is
logp( @11y, ) ~ % (d - s(l))Nf1 (d — s(l)) +1 (s(l),s(z))Cfl(F) (s(l),s(2>). (A13)

This is equivalent to setting the inverse noise matrix to zero for the part of the sky where there are no data.

A3. NO DATA AND NO NOISE LIMITS

Two limiting cases of our identity involve “no data” and “no noise.” In the no-data limit, the inverse noise matrix vanishes
everywhere, so that p(s|y, ¢) — p(s|To) and the posterior is given by the prior, as shown by

p(Lld) :/ds[ (F|s)}p(SIFo)

p(Told) p(Tols)
_ pGsiDe(™) |
_/ LU (s/T0)q( FO)} ifo)
q dsp(s|T")
(Fo) (A14)

In the noise-free limit, the conditional density p(s|y, o) — 6(s — Siue), independent of our choice of Iy, so that we converge to the
noise-free posterior ratio.

APPENDIX B
PROPERTIES OF THE POWER SPECTRUM ESTIMATOR
B1. POSTERIOR MAXIMUM

Recall that the algorithm used involves iterating
C/(Tyy1) = E(0y|T,,d) (B1)

and therefore the fixed point satisfies C;(I") = E(oy|T", d). We can prove that this estimator maximizes the posterior, or equivalently
the log posterior. A direct calculation shows that

o p(T'ld) 1 1 1 p(T|s)
9C,(T) p(Told) / @ {Z(I *z)f’f@{c,z(p)C,(F)”p(ro|s)p<s|d,ro>, (B2)

so that at the maximum

o=/ ds{;(’* )”’ [c%lm czzr>]}”“"”°>‘ (B3)

At the maximum we therefore have

C[(Fo) :/dSO'I(S)p(S|d,F()), (B4)
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which is identically the fixed point of the expectation maximization algorithm. Therefore, the iteration converges to the maximum
of the posterior (for a uniform prior).

B2. ESTIMATING THE CURVATURE OF THE LIKELIHOOD

After we have computed the maximum likelihood estimator of the power spectrum (or maximum posterior estimate), we want to
find a confidence interval. There are several ways this confidence interval might be approximated. One approach is to compute
the inverse curvature matrix of the likelihood and take the diagonal entries as an estimate of the error bars. We comment below on
how this can be done with the same method used to compute E(o;|d,T").

Approximating the likelihood as a Gaussian functional of the C;(T") is equivalent to a second-order Taylor expansion of the log
likelihood about the maximum. As before, we have the identity for the likelihood

%E)) - [ 5&%”“"”’ Fo). (B3)

It is more convenient to parameterize the likelihood ratio in terms of 6, = C; !, so that when embedding the data on the full sky,
we have

pslr) 1 e e BT
log 2 = Z(Hz){wl(m 0,T0)on(s) lgm)}. (B6)

Denoting the curvature matrix of the likelihood

& log p(d]T)
FypdTy)=———F" B7
. Ty) = - =22 C (B)
we have the relation
1 &logpdl) 1
—F 1 d F = . B8
w(d,To) C2(Ty) 00,00, C3(T) (B8)
The curvature of log p(d|I") evaluated at the maximum, where C;(T'y) = E(Cj|d,T), is therefore
9% logp(d|T
651722») = —(5]]/ (l + %)CIZ(P()) + (l + %) (l/ + %) [E(O’[O’[/|d, F()) - C;(FO)CW(FO)], (Bg)
where we have defined the expectation value
o (1/2)¢ [N +C1(Ty))¢
E(oyor|d, o) = /ngI(S‘Fg)UI’ §+¢) fdf' (/2 [N HC (TN (B10)

This can, in principle, be computed with the conjugate gradient descent method of transforming samples from a white-noise
process. Future work will study the accuracy and convergence properties of estimating the curvature matrix from transformed
white-noise sampling.

B3. COVARIANCE MATRICES

The correctness of the algorithm for power spectrum estimation presented in this paper is established by proving that the
covariance matrix of two linearly transformed vectors has some specific form. For simplicity of notation, we choose to denote the
covariance matrix of two vectors (x, y) as the expectation value of the outer product of the vectors E(x;);) = E(x ® y);;. For two
matrices 4 and B, an identity used repeatedly in computing covariance matrices is

E[(4x) ® (By)] = AE(x® y)B", (B11)
which is shown simply by checking for each matrix element

E[(Ax) ® ZE miXiBuiy})

= ZAME X)) Bl (B12)
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One example of this identity is in computing the expectation value of maps computed from time-ordered data. One form of making
a map from time-ordered data is given by

§=(R'N"'"R)"'R'N"'d (B13)
as mentioned in § 2 and in Tegmark (1997). According to the identity above, the covariance matrix of this map is
_ T
EG®8) = (R'N"'R) RN E@o d) (RN ) [(R'N'R) ] (B14)

Substituting d = Rs + 7, this is

EG®3) = (R'N"'R)" 'RTN'E[(Rs + ) @ (Rs + 77)]N*1R(RTJ\F‘R)’1

)'R'N"'[RE(s @ s)R” + RE(s @ n) + E(n ® s)R" + E(n® n)]N"'R(R"N"'R)

— (R'N"'R -
— (R'N"'R)"'R'N""(RCR" + N)N'R(R"'N"'R)""
—C+

+ (R'N"'R), (B15)

where we have used the independence of the signal and noise and also that both are zero mean processes.

B4. CONSISTENCY

The estimator given by the expectation maximization algorithm (also equivalent to the maximum likelihood estimator) is
given by

—(1/2)(d—Rs)N~"(d—Rs)—(1/2)sC"'s
E(s @ s|d) = /ds s®s) fds e—(1/2)(d—Rs")N=1(d—Rs")—=(1/2)s'C~1s" * (B16)

For partial sky coverage, this is equivalent to embedding the data on the full sky and marginalizing over the “missing”
observations

P 4 4 d<2> (1/2)(112‘73) (dzfs —(1/2)(d—Rs)N~'(d—Rs)—(1/2)sC's B17
(@ sld) = / (@) =) fd(sf,y)efu/z)ws 0 ) o (172 RN (3 R!) (1 /2)5C 15 (B17)

where we have arbitrarily chosen the full sky inverse noise matrix

. [R'N"'R 0
e (B18)
The expectation of the covariance matrix is then
o o—(1/2)(d®=5)N ! (d%=5) ,—(1/2)(d—Rs)N~! (d—Rs)—(1/2)sC"'s
ElE(s @ sld)] = /d”(d)/d(s’d )(S®S) Tds d/) @@ g D@ ey (B19)

[where we have indicated an integration over the data with the usual Lebesgue measure du(d) in order to avoid the confusing
notation d(d)]. Consistency of the estimator is then shown by proving that C = E [E(s ® s|d)].

Usmg the augmented n01se matrix (Wthh now has an inverse on the full sky), we can define the mean field map
§=N"'+C ) 'N(d,d?), with covariance matrix

EEG®@3d))=N"+Cc ) 'N'EdedN ' (N +c )

N
—CN+O) ' WrO)N+O)'C
'c

=C(N+C)” (B20)

The expectation value of the correction is (N~! + C‘l)_l, so that the covariance matrix for the sum of the mean field and
fluctuation maps is

EEs®sld)] = CNV +0)”'C+ (V' + )

=CIN+C)'C+NWN+0O)'C
=C. (B21)
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Therefore, the expectation maximization algorithm converges to the maximum likelihood estimator for a uniform prior, which is
also a consistent estimator for arbitrary sky coverage.

APPENDIX C
CORRECTNESS OF TRANSFORMED WHITE-NOISE SAMPLING

As discussed in § 2.5, the algorithm to sample maps from the Gaussian process with covariance matrix (N~! + C’l)f1 is as
follows:

1. Draw (wy, wy) from a white-noise process.
2. Compute § = C~'2w; + N~'2w,.
3. Compute £ = (C~! + N~! )_'5 with conjugate gradient descent.

We can prove that for any N~!, even one that does not have an inverse (i.e., as in the case of partial coverage of the chosen
embedding region), we have E(¢ ® €) = (N~' + C~")~!. From the above we have

e= (V) (O 4 N ), (C1)
which gives
E€oe)=(N"+C ) E|(CT W + N w) @ (VA + N ) (v )
N+ [C‘l/zE(w’ ®w)C? + CV2E(W @ w)NI/2
FNVEweW)C 2+ NTPEwe w)N"/z} N+
=) e AN e
—N ) (C2)

where by independence of the two white-noise maps E(w ® w') = E(w) ® E(w’), which vanishes since the white-noise process is
zero mean. An important point to notice is that the matrices N~! or N~!2 can be singular in the sense that they do not have inverses
on the full sky (i.e., are generated by incomplete scanning of the sky). In fact, N~12w vanishes in the null space of N~ (where we
do not have data).

For a realization of a white-noise process in the time domain 7 and a white-noise map in the spatial domain w, we compute a
fluctuation map according to

§=(CTHRINTIR) (O P RIN T, (C3)

where N~12 is known in the Fourier basis associated with the time domain. We can prove that the maps ¢ have the correct
covariance matrix, E(§ ® &) = (RTN"'R+ C~")"!, by the direct calculation

E@@6) = E[(C7'w+RIN"r) @ (C71Pw+ RTN127 )|
_ [C—‘/zE(w ®w)C V2 + RIN"V2E(r @ T)N_I/ZR}
=(C"+R'N'R), (C4)

where again the cross terms vanish since independence gives E(w ® 7) = E(w) ® E(7), which vanishes since both are zero mean
processes. Then this gives the covariance matrix

E€2é)=RN'R+C) EG@ 8RN 'R+C )

= (RIN"R+C ) ' (C"+RINTR)R'N +C 1)
— (R'N"'R+C)7, (C5)

1

so that the fluctuation maps do have the target covariance matrix.
APPENDIX D

EMBEDDING THE DATA IN AZIMUTHALLY SYMMETRIC REGIONS

We can also find the likelihood for the data embedded in an azimuthally symmetric region covered by a ring set. As discussed in
Wandelt & Hansen (2003), we represent the signal on the ring set with coefficients a,,, , so that
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S(ea ¢) = Z amm’eiimeeiim/(bv (Dl)

mm’

where both indices range from —Ly.x < m < L . Therefore, the signal on the sky, parameterized on the ring set, is given by a
two-dimensional inverse FFT. For any specific power spectrum, the corresponding signal matrix on the ring set covering the
embedding region is block diagonal. We denote the ring set covariance matrix 7 = E(a ® a).

Given the noise-free signal on the ring set s(6, ¢), any observed data set is given by projecting into the subregion where we have
data,

d(t) = Os + (1), (D2)

where O vanishes on the regions of the ring set where we have no observations. As before, we would first compute the mean field
and fluctuation maps. In order to sample fluctuation maps, we would again compute

(I+TO'N"'Q)¢ = T?w + CO'N /7, (D3)

where 7 is a time domain white-noise process, w is a spatial white-noise process on the full sky, and 7+2 is the Cholesky
decomposition of the ring set covariance matrix.

Although it is possible to compute the Cholesky decomposition of the ring set covariance matrix, we might instead sample C"?w
on the full sky and then project into the region covered by the ring set, giving maps RC"%w. Then the covariance matrix for these
maps is, using the usual identity,

E {(RCl/zw) ® (RCl/zwﬂ — RC2E(w® w)CV2R!
= RCR, (D4)

which is the correct covariance matrix on the ring set region. The point is that we do not have to compute the Cholesky
decomposition of the signal matrix on the ring set but can instead transform white-noise maps with the Cholesky decomposition of
the full sky signal covariance matrix (diagonal in the spherical harmonic basis), and then project down to the ring set region.
We can construct a preconditioner as follows. Define the projection from the time domain to the ring set following a Wandelt
scan strategy as WTN~!W. For the same time domain noise matrix N~!, we can use a preconditioner given by W'N~1W and define

M = ([+TWINT W) (D5)

It is shown in Wandelt & Hansen (2003) that WTN~—!W is block diagonal on the ring set, so that M~! can be computed in O(N?)
operations. We can then solve the linear equations for the mean field and fluctuation maps

M ' (I+TO'"N'Q)s =M 'TQ"N"d,
M1+ TO'N'0)¢ = M~ (1712w + TOTN ' 27). (D6)

For scans that are close to the ring set scan the intuition is that conjugate gradient descent will converge quickly for the above
equations.
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